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A class of unsteady axis3rmmetrie motions of an ideal incompressible fluid is investigated using exact solutions of the equations 
of the theory of shallow water. Copyright © 1996 Elsevier Science Ltd. 

In the axisymmetric case, the system of equations of the theory of shallow water in a cylindrical system 
of  coordinates (z, r, q~) with a vertical z axis which coincides with the axis of symmetry, radial coordinate 
r and azimuthal angle q0, have the form [1] 

du u2 OH do uv 
~ - - - = 0  

dt r = -g  Or dt r 

~ ( H -  o ) + l  ~---~(ru( H - D))=O (1) 

Here  u = u(r, t), a) = a)(r, t) are the radial and azimuthal components of the velocity, H = H(r, t) is 
the height of the fre.e surface of the fluid, g is the acceleration due to gravity (directed downwards along 
the z axis) and D(r) is a function describing the profile of the lower boundary (a diagram of  the flow is 
shown in Fig. 1 ). The pressure p is determined from the hydrostatic relation: p = Po + o g ( H - z ) ,  where 
o is the fluid density and P0 is the pressure on the upper boundary, which is assumed to be constant. 

A solution is sought in the interval r E (0, r.(t)) in which H / >  D. The boundary r = r.(t) is defined 
by the equality H(r.(t) ,  t) = D(r.(t)).  

The initial condiition will be fixed below. 
We will confine ourselves to the case when the lower boundary has the form of  a paraboloid of 

revolution 

D(r) = ~r  2 / 2 (2) 

We now rewrite system (1) in the form 

du Oh M 2 dM 
dt g-~r - gxr  4 r 3 " dt - 0 

~t  +r-~r(ruh)=O,  h= H - - x r - ,  (3) M = Ial 
2 

We note that system (1) is invariant under a transition to a system of coordinates which rotates about 
the z axis at a constant angular velocity fL We know [2] that the dynamical equations are modified in 
the following way iin such a system of coordinates: the terms 2 ~  + H2r are added to the right-hand 
side of the first equation of  (1) and the term 2D.u is added to the right-hand side of the second equation, 
respectively. These terms are eliminated by making the substitution a~ = ~' - Dz, and we arrive at the 
previous system (1) in which we now have a / ins tead of v. 
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Fig. 1. 

We now assume that, at the initial instant of time t = 0, the following are specified: the radial velocity 
in the form 

u=Ar ,  A=const  (4) 

a certain arbitrary distribution of the angular moment M = M0(r), and the initial distribution of the 
thickness of the layer h = ho(r) linked with M0 by the relation 

r ~ g = gvr, v = const. (5) 

If × = const and v = ×, the given relation is compatible with the equality u = 0 and they describe 
the steady solution of system (3) (the cyclostrophic balance). 

The problem is conveniently solved in Lagrangian coordinates. For r = r(t, r0), we seek a self-similar 
solution of the form 

r=p(t)ro (6) 

where r0 is the initial (Lagrangian) coordinate of the fluid particles. It follows from the second and third 
equations of (4) that 

M=Mo(ro)" h=g~ 3ro t I 
r--aTr 'o (q, i = 7 h° (tb) (7) 

It can be seen from relation (6) and the second equality of (7) that r33h/Or = r30~h0/&0, and from this, 
when account is taken of the initial condition (5), we have 

3h = g w i  4 M2 - gr3 -~r 

On substituting this relation and expression (6) into the first equation of (3), after some reduction 
we obtain the final equation for the one-dimensional motion of a particle of unit mass with a potential 
energy U = gv/2p 2 + g~p2/2 

d2p cgU dp 
dt 2 = - O--if; p = 1, ~ = A when t = 0 (8) 

When × = const > 0 and v > 0, the motion consists of non-linear oscillations about the equilibrium 
position p = (v /~)  1/4. W h e n  v ~< 0, as will be seen from what follows, the solution p(t) vanishes after a 
finite time. 

When ~ = const ~> 0, Eq. (8) can be integrated in an elementary manner. The solution has the form 

p(t) = - - - ~  (B + B' sin(q)+ sgn A~r-4g~t)) (9) 
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B = A'- B ' =  + g ( × + v ) ,  4B"-4g×v, sintp=(2g~-B)/B" 

If x = 0 (a plane lower boundary), we have 

p(t) = 4(1 + At) 2 + gvt z (10) 

The transition to an Eulerian representation in this problem is simple on account of the simple 
dependence (6). We now write out a summary of the formulae which govern the final solution of the 
problem 

u(r't)= r~--'p(t) dPdt M(r,t)=Mo(-~))'" , h=_pTho(_~)ll r (11) 

where the function p(t) is defined by relations (9) and (10) for the case when x = const, while in the 
general case x = ~(t), it is determined by the solution of Eq. (8). 

We will now consider some examples. The case when v = x = 0 (a plane lower boundary, cyclostrophic 
balance) is the simplest. It can be seen from the solution that an initial perturbation of the radial velocity 
leads to uniform motion along the radius while preserving the cyclostrophic balance. I rA < 0, then, 
when t ~ I A 1-1, we have h ~ o. and u ~ o., that is, the solution loses its meaning. In the case when × 
= 0, v > 0 and ~1 t> 0, the motion has the form of a monotonic spreading. When A < 0 and t 
(0, IA I(A 2 + gv) -1) the fluid moves to the centre and, when t > IA I(A 2 + gv) -1, it spreads monotonically. 
If h. (r°) = 0 for a certain r., the solution describes the spreading of a drop over a surface (ignoring 
surface tension). Finally, if x = const > 0 and v > 0 (positive curvature of the lower boundary), the 
motion is of an oscillatory nature with a frequency 2~/(g~). 
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